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Abstract—Graph-based detection methods leveraging Function
Call Graph (FCG) have shown promise for Android malware
detection (AMD) due to their semantic insights. However, the
deployment of malware detectors in dynamic and hostile en-
vironments raises significant concerns about their robustness.
While recent approaches evaluate the robustness of FCG-based
detectors using adversarial attacks, their effectiveness is con-
strained by the vast perturbation space, particularly across
diverse models and features. To address these challenges, we in-
troduce FCGHUNTER, a novel robustness testing framework for
FCG-based AMD systems. Specificallyy, FCGHUNTER employs
innovative techniques to enhance exploration and exploitation
within this huge search space. Initially, it identifies critical areas
within the FCG related to malware behaviors to narrow down
the perturbation space. We then develop a dependency-aware
crossover and mutation method to enhance the validity and
diversity of perturbations, generating diverse FCGs. Furthermore,
FCGHUNTER leverages multi-objective feedback to select per-
turbed FCGs, significantly improving the search process with
interpretation-based feature change feedback. Extensive evalua-
tions across 40 scenarios demonstrate that FCGHUNTER achieves
an average attack success rate of 87.9%, significantly outper-
forming baselines by at least 40.9%. Notably, FCGHUNTER
achieves a 100% success rate on robust models (e.g., AdaBoost
with MalScan), where baselines achieve less than 24% or are
inapplicable.

Index Terms—Android Malware Detection, Function Call
Graph, Robustness Testing.

I. INTRODUCTION

NDROID malware, such as those designed to steal users’

privacy or device resources, has become a major threat
to mobile security [1], [2], [3]. This growing threat, fueled
by the popularity and openness of the Android platform, has
driven the development of various detection methods. In recent
years, machine learning (ML)-based approaches have been
widely applied in AMD, demonstrating promising results by
leveraging static features of applications [4f, 30, [6l, [7I,
[8], 19], [10]. These methods can be mainly divided into
two categories, i.e., string-based detection (e.g., Drebin [4],
FD-VAE [11]), and graph-based detection (e.g., MalScan [8],
MaMaDroid [9]). Graph-based methods have emerged as
a particularly promising alternative [12], offering superior
performance compared to string-based ones [8], [10], [12].
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Specifically, such methods use features extracted from the
FCG of an Android package kit (APK)’s smali code (i.e., the
intermediate representation of an APK after compilation [13]]),
which offers deep semantic insights into app behaviors and
effectively identifies malicious patterns.

However, ML-based applications are widely recognized for
their susceptibility to robustness issues [14], [15], [16], [17],
[18], which can lead to severe consequences, particularly in
safety- and security-critical contexts like autonomous driving
and malware detection. For instance, attackers can make subtle
modifications to malware, preserving its malicious intent while
enabling it to evade detection. To address this, robust testing
is essential before deploying ML models in dynamic and
potentially hostile environments [19]. To this end, adversarial
attack methods [20], [21], [22], 23], [24] have been developed
to rigorously evaluate model robustness. These evaluations
help developers identify vulnerabilities, providing insights for
improving robustness, such as retraining models with adver-
sarial samples generated during testing [25], [26], [27].

There are two main kinds of attacks in graph-based AMD:
feature-level attacks and code-level attacks. Feature-level at-
tacks, which directly perturb the features of an APK (i.e.,
the model’s input), can achieve high success rates [21], [8l,
[24]. However, these perturbations often do not realistically
reflect APK modifications, thereby compromising the fidelity
of robustness assessments. In contrast, code-level attacks alter
the APK’s smali code, indirectly changing its features used
for detection. These attacks, conducted directly on the APK,
are more realistic but inherently more complex due to the
discontinuous nature of the perturbation space.

Recent studies have begun to explore code-level adversarial
attacks [28], [23]. Essentially, these attacks involve modifying
the smali code of an APK such that its FCG can be affected.
HRAT [28], the pioneering work, introduced a set of FCG-
level perturbation operators that can be translated into seman-
tically consistent code-level perturbations. Furthermore, a deep
Q-network (DQN) is used to guide the perturbation generation.
Meanwhile, BagAmmo [23]] employs a genetic algorithm (GA)
that simulates targeted classifiers with a surrogate model and
modifies the FCG by inserting non-executable code, opti-
mizing the attack process. Despite these advancements, their
effectiveness is still limited, particularly when facing relatively
robust scenarios [12] (e.g., MalScan [8]).

The primary challenge lies in the vast perturbation space
in the APK, where potential modifications to an FCG can be
infinite, complicating the search for adversarial perturbations.
To effectively navigate this, a variety of perturbation opera-
tors is necessary for enhanced exploration, alongside precise



TABLE I: The Scope of Existing Adversarial Attack Methods.

Tool Ensemble Models

Random Forest | AdaBoost

Instance Algorithm
KNN-1 | KNN-3

FCG-based Deep Learning
AMD MLP

MalScan
MaMaDroid
APIGraph

HRAT

MalScan
MaMaDroid
APIGraph

BagAmmo
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Note: (@) for full consideration and (O) for no consideration.

feedback mechanisms for better exploitation. However, current
methods are often restricted to specific mutation types, such as
only adding edges [23], or they perform multiple but simplistic
perturbations [28], limiting the generation of diverse FCGs.
Concerning feedback mechanisms, existing approaches like
HRAT [28] predominantly rely on gradient information, which
is costly and unobtainable in non-differentiable ML classifiers
like Random Forest or K-nearest neighbors (KNN). These
challenges become more severe when AMDs employ diverse
features and models. Additionally, we observe that current
methods are mainly applied and evaluated only in limited
scenarios (as depicted in Table [I) and fail to be effective in
scenarios with more robust features [8], [12] (e.g., MalScan)
and popular models (e.g., Random Forest).

Motivated by these issues, this paper introduces
FCGHUNTER, a testing method specifically designed to
assess the robustness of FCG-based malware classifiers
across various feature types and models. FCGHUNTER
optimizes a sequence of perturbations to the original FCG so
that the modified sample can bypass detection. Specifically,
FCGHUNTER tackles the exploration and exploitation
challenge in the vast perturbation space through several
innovative strategies: 1) it narrows the search space by
pinpointing critical areas of the FCG based on sensitive
system APIs; 2) it incorporates diverse perturbation operators,
including three novel types (e.g., Adding Long Edges) that
significantly impact FCG features for better exploration; 3) it
introduces a dependency-aware mutation representation and
a conflict-resolving strategy, ensuring the feasibility of the
sequence of perturbations; and 4) for optimal exploitation,
FCGHUNTER employs a multi-objective optimization. Except
for the model output feedback, a novel interpretation-based
feedback, utilizing the SHAP method [29], is proposed
to prioritize perturbations that significantly affect crucial
features, thus improving the effectiveness of the whole
search.

Technically, FCGHUNTER is implemented within a genetic
algorithm framework. Each individual in the population is
represented as a sequence of perturbations, where each gene
is not just a single perturbation but a sub-sequence of de-
pendent perturbations. These sub-sequences, containing highly
interdependent perturbations, are considered together during
crossover and mutation processes to ensure the validity of the
generated FCG. Following this step, individuals are selected
based on interpretation-assisted fitness scores that evaluate the
effectiveness of perturbations in evading detection. If conflicts
arise, FCGHUNTER resolves them by adjusting or removing
the conflicting perturbations, ensuring that the best candidates

are retained for further evolution.

To demonstrate the effectiveness of FCGHUNTER, we
conducted comprehensive experiments on 40 distinct target
models, incorporating eight types of graph embeddings and
five different ML classifiers. To the best of our knowledge,
we are the first to evaluate AMD systems across such a
broad and diverse range, covering all the scenarios outlined in
Table FCGHUNTER achieves an average attack success rate
of 87.9% across these detection models, significantly outper-
forming state-of-the-art methods (i.e., HRAT and BagAmmo)
by at least 40.9%. Our experiments also confirm the usefulness
of the key components in FCGHUNTER. Based on the trans-
ferability of different models, we also applied FCGHUNTER to
evaluate the robustness of black-box models (i.e., VirusTotal)
in the real world, revealing the robustness issues of such
models.

In summary, our main contributions are as follows:

« We expose the challenges presented by current approaches
for attacking three widely-used ML model types: deep
neural networks, k-nearest neighbors, and decision trees,
each trained with distinct feature sets. Our analysis reveals
that existing methods have limitations in certain scenarios,
particularly regarding the models and feature types.

« We propose a novel robustness testing framework, incor-
porating dependency-aware mutation and multi-objective
optimization, which can effectively evaluate different kinds
of graph-based Android malware detectors. Our approach
generates adversarial samples while preserving the mali-
cious functionalities of the malware, leveraging diverse
perturbation operators for enhanced exploration and precise
feedback mechanisms for optimal exploitation.

« We conduct comprehensive experiments across 40 target
models, spanning five distinct model and eight feature sets,
which demonstrate the effectiveness of FCGHUNTER. We
have made our dataset and code publicly available [30].

II. GRAPH-BASED ANDROID MALWARE DETECTION

Graph-based detection leverages features extracted from the
FCG of an APK’s smali code (i.e., the intermediate represen-
tation of an APK after compilation [13]), which captures the
runtime behavior semantics of the application. The FCG is
then transformed into a feature vector via graph embedding,
which is subsequently used for binary classification to de-
termine whether the application exhibits malicious behaviors.
Next, we will introduce the main FCG-based methods, which
include three graph embedding techniques and three widely
used ML-based classifier types.

A. Graph Embedding Methods

This step involves deriving a vector from an APK’s FCG,
where nodes represent functions or abstract entities and edges
depict call relationships, to capture crucial structural and
behavioral patterns for classification. In the following, we will
briefly introduce the three commonly used features [12], i.e.,
MalScan, MaMabDroid, and APIGraph.

MalScan [8] emphasizes the importance of 21,986 critical
system API calls within function-level call graphs. To encode



the FCG into a fixed-length feature vector, MalScan first
identifies which of these predefined system APIs are actually
invoked in the given APK (i.e., have corresponding nodes
in the FCG). For each identified API node, it computes a
structural importance score using one of six centrality metrics.
For the rest of APIs not used in the APK, the corresponding
feature values are set to zero.

Specifically, it defines four basic centrality metrics: Degree,
Katz, Closeness, and Harmonic, each offering unique insights
into a node’s significance. For example, Degree Centrality
measures a node’s importance based on the number of direct
connections it has. In a directed FCG, the degree feature for
a node v is the sum of its in-degree and out-degree, i.e.,
_ degree(v)
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where degree(v) represents the number of edges connected to
node v, and N is the number of nodes in the FCG.

In addition, MalScan employs two aggregated centrality
metrics to enhance feature robustness: Average and Concen-
trate. In the Average mode, for each identified API node,
the four basic centrality scores are computed and averaged
to produce a single representative score, resulting in a 21,986-
dimensional feature vector. In contrast, the Concentrate mode
preserves all four basic centrality scores for each identified
API node and concatenates them into a single vector, resulting
in a 21,986 x 4-dimensional representation.

MaMaDroid [9] extracts behavioral features by con-
structing a first-order Markov chain over abstracted API
call transitions derived from FCGs. Each API call in the
FCG is abstracted into a corresponding high-level state,
defined at either the family level (11 coarse-grained cate-
gories such as android, java, etc.) or the package level
(446 fine-grained packages such as android.accounts,
android.content, etc.). Based on this abstraction, the
FCG is traversed to extract transitions between consecutive
states. These transitions are aggregated into a transition matrix
that reflects the empirical frequencies of state-to-state invoca-
tions.

For a Markov chain with state space S, the transition
probability from state j to k is defined as:
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where O, denotes the number of observed transitions from
state j to k in the graph. The resulting transition matrix is
row-normalized so that each row sums to 1.

To obtain a vector representation, the transition matrix is
flattened into a |S|2-dimensional vector, resulting in a 121-
dimensional vector for family-level abstraction and a 198,916-
dimensional vector for package-level abstraction.

APIGraph [10] utilizes a knowledge graph built upon
the official Android API documentation to group APIs with
similar functionalities or usage contexts through clustering.
Therefore, it not only abstracts the representation of FCGs but
also significantly reduces feature dimensions. For instance, it
can reduce the dimensions in MaMaDroid’s package mode.

In our implementation, we cluster the 442 API packages
from MaMaDroid’s abstraction (excluding two special cate-
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gories: self-defined and obfuscated) into 50 semantic
groups using the pretrained API knowledge graph. Including
the two special categories, this yields a total of 52 abstracted
states. We then construct a 52x52 transition matrix based on
the formula After row normalization, the matrix is flattened
into a 2,704-dimensional feature vector, which serves as the
final input embedding for downstream detection models.

B. ML-based Classifiers

After obtaining feature vectors via the graph embedding,
ML-based methods are employed for the binary classification
(i.e., malware or not). There are three commonly used types
of classifiers: deep learning (DL), instance-based learning,
and ensemble-based learning. Such architectural diversity al-
lows us to investigate how different model types respond
to adversarial attacks, revealing variations in their robustness
characteristics.

Deep learning. Multi-Layer Perceptron (MLP) is a basic
DL model widely used in AMD and adversarial attacks [31],
[32], [33], [23]. MLP learns nonlinear relationships between
input features and output class labels, and it outputs a continu-
ous score from 0 to 1 that indicates the probability of a sample
being malicious, using a sigmoid activation function. Due to
its differentiable and continuous nature, MLP is susceptible to
gradient-based attacks [34].

Instance-based learning. The KNN algorithm, a typical
instance-based method commonly used in AMD [35], [21],
[28], [33], [23], classifies data points by measuring distances
(typically using Euclidean [36] metrics) to the nearest training
samples. For each query, it selects the k closest samples (e.g.,
k = 1) and assigns a class based on the majority label among
these neighbors. Unlike MLP, KNN outputs discrete class
labels based on local neighborhood decisions, potentially of-
fering enhanced robustness against gradient-based attacks [37].

Ensemble-based learning. Random Forest and Ad-
aBoost [21], [9], [33], [23] effectively combine multiple learn-
ing algorithms to enhance both performance and robustness.
Random Forest, an ensemble of decision trees, consolidates
decisions through majority voting, thus mitigating the in-
fluence of any single, potentially biased model. AdaBoost
sequentially applies a series of weak learners to progressively
modified datasets, thereby incrementally improving the per-
formance of initially weak classifiers. Unlike MLP’s smooth
continuous outputs, ensemble models make decisions through
voting mechanisms (i.e., majority voting for Random Forest,
weighted voting for AdaBoost), creating discrete decision
boundaries that may be more robust against gradient-based
adversarial attacks [38].

We note that the dependence of adversarial effectiveness
on the choice of ML algorithms is a general phenomenon
across domains [37], [38]. In FCG-based AMD, this effect
is further amplified by the sparsity of predefined API features,
where only a small subset of APIs are activated per APK.
Consequently, perturbations must act on very limited feature
dimensions, making adversarial attacks particularly challeng-
ing in this domain.
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Fig. 1: Overview of FCGHUNTER.

III. PROBLEM FORMULATION

Given a target AMD system represented by model M (-),
which classifies input APKs as either benign or malware,
we use G and E to represent the functions that extract the
FCG from an APK and calculate the embedding of the FCG,
respectively.

Inspired by prior works on adversarial testing |28], [23],
we define the AMD testing problem in the problem space
as follows: for a given malware sample m, find FCG-level
perturbations 6 € A such that:

M(E(G(m))) # M(E(G(m) & 6))

subject to: F(m) = F(m + reverse(d)) @

where A represents all possible perturbations in the FCG
space, @ denotes the operation of applying perturbations to
the FCG, reverse(-) transforms FCG-level perturbations into
corresponding code-level modifications, + denotes applying
these code modifications to the original APK, and F represents
the functionality of the APK.

The formulation sets forth three critical requirements for
calculating the perturbation: (1) the perturbation should be
reversible, allowing it to be mirrored at the smali code level;
(2) the perturbation does not affect the functionality; and (3)
the feature should be alerted sufficiently to change the final
prediction outcome. Addressing this problem necessitates an
effective optimization-based method to search and apply these
perturbations effectively.

IV. OVERVIEW OF FCGHUNTER

Figure |1| illustrates the main workflow of FCGHUNTER,
which includes identifying critical areas of the FCG and
optimizing perturbations within these areas using a GA.

Step 1: Initially, FCGHUNTER extracts the FCG from the
malware’s smali files. Given the challenge of navigating the
vast perturbation space within an FCG, we first pinpoint the

critical areas (see comprising nodes and edges that signif-
icantly influence model predictions, thus effectively reducing
the search space.

Step 2: FCGHUNTER employs a GA to optimize perturba-
tions in the identified critical area. For better exploration in the
perturbation space, we incorporate seven semantics-preserving
mutation operators on FCGs (see § [VI-A). Note that these
mutation operators can be translated to code-level mutation
that does not affect the original functionality. The optimization
aims to identify a sequence of operators that orderly perturbs
the FCG. Each individual in the GA population represents a
perturbation sequence, enabling the mutation of diverse FCGs.
« Step 2.1: However, directly applying crossover and mutation
at the level of perturbation operators to generate offspring
may lead to invalid perturbations that cannot be applied
to the original FCG. For example, an Add Edge operator
may become infeasible if its prerequisite node has been
removed by an earlier operator within the same sequence.
To address this issue, we perform a dependency analysis and
group dependent operations into sub-sequences, ensuring the
validity of the perturbation sequence (see § [VI-B).

Steps 2.2 and 2.3: Crossover and mutation processes are
then performed at the level of sub-sequences to ensure the
dependency. Additionally, we propose a conflict-resolving
mechanism (see § to address any conflicts within a
sequence after crossover and mutation.

Step 2.4: The new individuals are evaluated to calculate
their fitness, selecting the best candidates for the next
iteration or stopping if optimal conditions are met in the
current iteration. To obtain more useful feedback, we design
model-specific and explanation-based fitness functions (see
§ @: a multi-objective score for MLP classifiers, a
surrogate model approach for instance-based classifiers, and
a constraint-based solution for decision tree classifiers. If
a perturbation sequence successfully bypasses the target
model when applied to the FCG, it is recorded as a failure
test (i.e., an adversarial sample). The sequence is finally




applied to alter the APK’s smali code, resulting in a malware
that can be misclassified as “benign”.

V. STEP 1: CRITICAL AREA IDENTIFICATION

To mitigate the issue of search space explosion, we propose
a specialized critical area identification method designed for
FCG-based embeddings. This method efficiently pinpoints
nodes and edges sensitive to perturbations that have notable
impacts on detector outcomes, thereby reducing the search
space during GA optimization.

An FCG is obtained through static analysis of the smali code
from the decompiled APK. Nodes in the FCG are categorized
as system nodes (SDK-defined functions, i.e., APIs) and
user nodes (user-defined functions). Malware often invokes
some sensitive system APIs to achieve malicious objectives
(e.g., accessing user contacts). In other words, malicious calls
typically occur from user nodes to system nodes. Therefore,
FCG-based AMD typically prioritizes the user function calls
that can invoke system APIs.

To locate user function calls that can invoke critical system
APIs (e.g., 21,986 sensitive APIs in MalScan and 11 family
states in MaMaDroid), we first identify the nodes representing
these critical system APIs in the graph, and then perform a
backward traversal from these nodes to identify preceding
nodes and edges, defining these connected regions as the
critical area. Note that the perturbation can only be performed
in the user functions. This area will be used for the subsequent
GA-based optimization process.

VI. STEP 2: PERTURBATION OPTIMIZATION

A. Basic Perturbation Operators

Given an FCG G = (V, E), the nodes V include both system
nodes Vs and user nodes V,, and an edge (v1,vs) € E shows
the calling relationship between the two functions (with the
caller v and the callee vs). In an FCG, user nodes can act as
callers or callees, while system nodes can only serve as callees.
To modify the FCG, we integrate seven semantic-preserving
and code-level perturbation operators. The first four operators
are based on prior work [28], and we briefly introduce these
four operators:

o Add Node: This operator creates a new function ¢ and selects
a user node a € V,, to invoke 7. Consequently, a new node ¢
and new edge (a,i) are added to G. The new function 7 is
designed to perform non-functional operations (e.g., basic
mathematical calculations) to ensure that it does not affect
the overall functionality.

o Add Edge: This operator establishes a new call between two

existing functions, i € V,, and f € V, resulting in a new

edge (i, f) within G.

To maintain original functionality, strategies such as using

try-catch blocks [23] and unreachable conditions [28] ensure

that the callee f is never invoked, even though the calling

is in the G.

Rewire: This operator removes an existing edge (a,d) and

selects a user node h € V,, as an intermediary, adding two

new edges: (a, h) and (h,d), where (a, h) is a’s invocation
to h, and (h,d) is h’s invocation to d. Special branches are

added to related functions to ensure the original invocations

of a and d remain unaffected.

e Remove Node: This operator removes a user node d € V,.
For maintain functionality, it identifies all original callers
{h|(h,d) € E} and replaces the invocation statements
with d’s function body in the code. Correspondingly, the
edges {(h,d) € E|h € V,} are removed, and new edges
{(h,v)|(h,d) € EN(d,v) € E} are added to the G, where
h are the original callers of d and v are its callees.
However, these operators are very basic and insufficient

for modifying features, particularly those in robust models

(e.g., MalScan, which is sparser than others), often leading the

GA toward local optima. Therefore, we introduce three new

perturbation operators designed to substantially affect features:

o Add Sparse Nodes: This operator adds k& nodes
v1,V2, ...,V to the G at once. To affect the area around
an existing node a € V,,, edges (a,v1), (a,v2),..., (a,vg)
are added. This dilutes the centrality of other nodes and
redistributes the influence across the G.

o Add Dense Nodes: This operator first performs the Add
Sparse Nodes operator, then adds new edges {(v;,v;)]i <
JjNi,j €[1,k]} to the G. This effectively creates a dense
subgraph, decreasing the relative importance of other paths
in the G, which is particularly impactful for path-based
analysis methods (e.g., Katz in MalScan).

o Add Long Edges: This operator adds m long edges between
two existing nodes a € V,, and f € V. For each long edge,
k new nodes v1,vs,. .., v, are added sequentially, creating
the edges (a,v1), (v1,v2),..., (Vk—1,vk), and finally an
edge (vg, f) to create a path between a and f. This increases
the number of paths leading to f in G, significantly boosting
its centrality in the network.

These three operators are based on the combinations of four

basic operators, thus still ensuring the functional integrity of

the APK. Differently, they introduce a greater magnitude of
perturbation for affecting the graph’s features by allowing for
the adjustment of parameters (e.g., k), which increases the
population’s diversity and helps avoid the risk of GA falling

into local optima (see results in .

Translating FCG-Based Mutation to Code-Level Per-
turbation. It is essential to convert FCG-based mutations
into code-level modifications. These modifications should be
repackaged into an APK that retains the same functionalities
as the original. Specifically, the mutation in the FCG can be
mapped to corresponding changes in the code as followsE]

e Add Node: We introduce a new function (i.e., node %) in
the code that does not affect the original functionality (e.g.,
only printing or simple calculation like int j = j + 1, and
then returns j. The existing function (i.e., the user node a
in FCG) is modified to call this new function, but it does
not process or utilize any of the returned value, thereby
preserving the semantics of original function.

e Add Edge: We add an invocation from a user function a
to any other function b. To guarantee the functionality of
original function a, we can prevent the actual execution
of function b by introducing a condition parameter in b

"More detailed illustration and code change examples can be found in [28].



and insert an i f-else statement in its function body. When
the function a invokes b, condition is set to true, causing
b to return a value immediately, without executing the
original logic in b. For invocations from b’s original callers,
condition is set to false, allowing b to execute its original
logic, thereby preserving the original functions.

o Rewire: We redirect an existing call from function a to
function ¢ through an intermediary function b, so that the
call flow becomes a — b — c. To achieve this, we replace
a’s call to ¢ with a call to b and add a call to ¢ within b.
To ensure b’s original callers remain unaffected, we apply
a strategy similar to Add Edge, i.e., using a condition
parameter.

e Remove Node: We delete function a, which results in the
removal of all calling relationships involving a in the
original graph. To ensure that the program logic remains
unaffected, we copy a’s function body into all its caller
functions as an inline code implementation. Consequently,
in the final graph, direct connections are established between
a’s original callers and its callees.

o Add Sparse Nodes: We insert k functions simultaneously,
all of which are called by a single existing function a. To
maintain original program semantics, similar operations as
in the Add Node process are applied.

e Add Dense Nodes: We start by performing the same op-
eration as in Add Sparse Nodes. Then, for the newly
added k functions, we sequentially connect them with calls.
Throughout this process, we apply the same method as in
the Add Edge operation to ensure that program semantics
remain unchanged.

e Add Long Edges: Suppose we insert a long edge by adding
k intermediate functions between an existing function a and
a function ¢, thereby creating a nested call sequence. Essen-
tially, this establishes a chain of function calls, where a calls
the first intermediate function, which in turn calls the next,
and so on, until reaching c. These intermediate %k functions
are newly added and serve solely as proxies, relaying the call
from a to ¢ without affecting any other existing functions
or altering the program’s original functionality.

Note that our approach mainly utilizes FCG-based muta-
tions instead of arbitrary direct code mutations (e.g., trans-
forming m = m * 2 to m = m << 1). This is because we
focus on FCG-based AMDs that rely solely on the features of
the FCG. Arbitrary code mutations may not always impact the
FCG, and therefore, might not effectively influence robustness.

Operator Constraints and Safety Guarantees. To guar-
antee the safety of our modifications and preserve program in-
tegrity, these seven operators enforce the following constraints
during the execution:

o System Method Protection: Methods from the Android
framework are never modified or removed, as their imple-
mentations are externally defined and cannot be altered by
the APK.

o Lifecycle Method Protection: Android lifecycle methods
(e.g., onCreate, onDestroy) form a special category
of user-defined methods that override framework callbacks.
Modifying these methods or their call relationships may
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Fig. 2: Crossover with/without Dependency Strategy.

disrupt the system’s implicit invocation mechanisms, poten-

tially causing application crashes or unexpected behavior.

o JVM Special Method Protection: Constructor methods (i.e.,
<init>) and static initializers (i.e., <clinit>) are ex-
cluded from modification, as they are managed by the JVM
and essential for correct object and class initialization.

o Cycle Prevention: Operators that add new edges include
cycle detection checks to maintain the acyclic property of
the FCG, avoiding infinite recursion and potential deadlocks.

o Inheritance  Safety  Checks:  Methods  containing
invoke-virtual instructions in their function body
are excluded from Remove Node operations to prevent
semantic violations during inlining, as such methods may
be overridden by subclasses.

Any operation that violates these constraints is rejected, and
the GA explores alternative perturbation strategies, demon-
strating the practical importance while maintaining attack
effectiveness.

B. Step 2.1: Individual Representation

To initialize the GA’s population, a simple way is to ini-
tialize each individual as a sequence of perturbation operators
(01,09, ...,0,), Wwhere o; denotes one of the seven available
perturbation operators. The sequence is then applied to the
FCG G to generate a new FCG G’.

However, dependencies among operations often result in the
generation of invalid perturbation sequences during crossover
and mutation processes. For example, as shown in the top
of Figure 2| two sequences of individuals undergo crossover,
creating an infeasible sequence in the new individual. With-
out the AddNode(i) operator, the RemoveNode(i) operator
becomes infeasible as the node 7 does not exist in the G. This
issue can also arise during mutation, which greatly affects the
testing efficiency.

To address this issue, we propose a dependency-aware
representation to avoid operator conflicts during crossover
and mutation processes. The approach involves a preliminary
dependency analysis, grouping dependent operations into sub-
sequences. Then crossover and mutation are performed at the
level of sub-sequence.

To identify the dependent perturbations, we develop a
greedy-based method (see the detailed algorithm on the web-
site [39]) to check for dependencies between current operator



o and the existing sub-sequence Segq. If o shares dependencies
with any operators in Seg, it is added to that group; otherwise,
o is placed into a new sub-sequence, indicating no dependen-
cies with existing groups. Specifically, dependency checking
involves a use-def analysis [40] where the target nodes V'
and edges E’ created by an operator o' (the definition) are
examined against the usage in operation o. If o utilizes any
nodes or edges defined by o/, a dependency exists. Taken the
example in the bottom part of Figure AddNode(i) defines
node i, and RemoveNode(i) uses node 4, establishing a de-
pendency that necessitates grouping these operations together
as an atomic operation to ensure safe crossover and mutation.

Note that, during the GA initialization, the initial sequence
(01,02, ...,0y,) is guaranteed to be valid through the on-the-
fly check. Specifically, starting with the initial graph G, a
valid sub-sequence is randomly selected that can feasibly be
applied to the current state of G. After applying this sub-
sequence, the G is updated to G’. Subsequent operators are
then chosen based on this updated G’, ensuring each selected
operator remains feasible.

During GA iterations, the generation of individuals differs
significantly from this initial process. Instead of being gen-
erated on-the-fly, the entire sequences in individuals are first
constructed (with crossover and mutation) and then evaluated
later. It introduces the problem in maintaining the feasibility of
each operator within the sequence. Our dependency analysis is
designed to mitigate this challenge in crossover and mutation.

C. Step 2.2 and 2.3: Crossover and Mutation

Once dependency-aware individuals are established,
crossover and mutation processes are conducted at the
sub-sequence level. This approach is crucial for maintaining
the integrity of dependent operators within each individual.

Crossover. Sub-sequences that contain dependent operators
are randomly selected either to be retained or removed in
their entirety from the new individual during the crossover
process. This method helps prevent conflicts that could arise
from breaking apart interdependent operations (see step 2.2 in
Figure|[T).

Mutation. As shown in step 2.3 of Figure a sub-sequence
is randomly chosen, and one of three types of mutations
is applied: adding, removing, or updating. Adding involves
inserting a new operator at a randomly selected position within
a random sub-sequence, while removing deletes the operator at
that position. Updating involves replacing an existing operator
within the sub-sequence with another random operator.

Due to the possibility of disturbing the dependency of the
sequence, we then perform an on-the-fly dependency check
for operators. If a mutation renders subsequent operators
infeasible, such as by altering dependent nodes or edges, we
use a fix strategy. Problematic operators may be modified to fit
the new context (e.g., changing an edge or node) or removed
from the sequence. If the fix fails, the mutation is abandoned.

D. Step 2.4: Evaluation and Selection

After crossover and mutation in the GA, we obtain new
individuals as offspring. The fitness function is crucial for
selecting superior individuals from the offspring.

The typical fitness function in adversarial attacks uses the
model’s output to decrease the prediction probability of the
current class or increase that of the target class [41], [23].
However, relying solely on model output may not be effective
in the context of AMD attacks, especially due to the non-
differentiability of instance-based models and decision trees.
Specifically, it can lead to premature convergence (i.e., all
yield similar probability values), particularly if the model
consistently exhibits high confidence in classifying certain
samples as malicious.

1) Fitess for MLP Model: To overcome this challenge,
we introduce an additional guidance mechanism based on
feature interpretation, i.e., SHAP [29], a popular technique
for understanding feature importance. Features with positive
SHAP values positively contribute to the prediction, whereas
negative SHAP values indicate a negative contribution.

When the GA encounters local optima without observable
changes in model output, SHAP values allow us to monitor
feature-level changes, offering a finer-grained criterion for
selection. Specifically, if an individual increases the value of
features with negative contributions or decreases the value of
features with positive contributions, the prediction is closer to
failure, even if the probability output remains unchanged.

We define a multi-objective fitness function as follows:

fitness1(I) = M(E(G + 1))

n—1
fitness2(I) = = > SHAP(M,G,1); - (E(G); — E(G + 1)) @

i=0

where [ is a given individual (i.e., perturbations), G is the
original FCG, E(G) is the embedding vector of the G with
length n, M (E(G + I)) is the probability of the benign class
and SHAP(M, G, I) represents the SHAP values of features.

The fitnessl evaluates the model’s target class probabil-
ity. The fitness2 measures the potential for classification
changes, with SHAP(M, G, I); indicating the direction (pos-
itive or negative) and E(G); — E(G + I); quantifying the
change in the i-th feature value due to perturbation 1.

Dominance and Selection. We define a dominance relation
for selection based on the two scores. An individual z is said
to dominate another one y if and only if:

fitnessl(xz) > fitness1(y)V )
fitnessl(z) == fitnessl(y) A fitness2(z) > fitness2(y)
We prioritize individuals with higher benign probability scores
or, when scores are equal, those that modify feature values in
the most beneficial direction.

2) Fitness for Instance-based Model: For instance-based
learning models (e.g. KNN), the main challenge is the lack
of gradient information. To approximate gradients for KNN,
we employ a surrogate model (e.g., an MLP model), which
facilitates the use of an interpretation-based approach (see
alongside the model output.

For a KNN model M, where the adversarial challenge is to
manipulate the instance such that it resembles benign samples
more closely than malware samples, we train a surrogate



model M’'. This allows us to derive a dual-score fitness
function, as follows:
k

fitness1(I) = = S(M(D)T — M(D)?)
Ti=
e (6)
fitness2(I) = = > SHAP(M',G,I); - (E(G): — E(G + 1))
1=0

where k represents the number of neighbors considered in
KNN. M (I)* denotes the distance to the i-th nearest malware
sample, and M (I)? denotes the distance to the i-th nearest
benign sample.

The fitnessl aims to increase the similarity to benign
neighbors and decrease the similarity to malware neighbors,
effectively manipulating the prediction of the adversarial ex-
ample. The second fitness function fitness2, similar to that
used for target MLP models (§[VI-DI), utilizes SHAP values
estimated by the surrogate model M’ to assess the impact of
perturbations on feature importance. The selection follows the
dominance relation defined in Equation@

3) Fitness for Ensemble Model: Ensemble models like
Random Forest determine output probabilities through a voting
process among numerous decision trees, each selecting a
subset of features for decision nodes (tree split nodes) [42].
Altering tree-based model outputs during testing is challeng-
ing, especially when only a few or none of the selected deci-
sion features are present in the target sample. Consequently,
changes in the overall model output (i.e., the decision of the
majority of trees) are unlikely if key decision features remain
unaffected.

To overcome this challenge, we directly examine the con-
straints associated with the decision features. By analyzing the
decision paths of all decision trees, we identify all possible
feature constraints that could result in a benign output, as our
goal is to have the target model misclassify the malware as
benign. We will eliminate the constraints that conflict with
those from other decision trees. Finally, our objective is to
maximize the number of constraints that the perturbed inputs
can satisfy, thereby increasing the likelihood of a benign
classification. The fitness function is defined as follows:

fitness(I) = > SAT(G, M, I,c) @)
ceC
where C' represents all the constraints that can potentially lead
to a benign output, and SAT determines whether a given
constraint ¢ € C' is satisfied (1) or not (0). The optimization
process aims to generate perturbations that maximize the
number of satisfied constraints.

VII. EVALUATION

We aim to evaluate the effectiveness of FCGHUNTER by
answering the following research questions.

- RQ1: How effective is FCGHUNTER compared to others?

- RQ2: How effective is FCGHUNTER in attacking target
models under concept drift scenarios?

- RQ3: What is the performance of FCGHUNTER?

- RQ4: How does each component of FCGHUNTER impact
the overall effectiveness?

A. Experimental Setup

Dataset. Since the datasets used in previous studies are not
publicly available, we follow standard data collection method-
ologies described in prior works [28], |23, [43]. Benign sam-
ples are obtained from AndroZoo [44] (with a VirusTotal [45]
score of 0), and malware samples from VirusShare [46] (with a
VirusTotal score above 4). We evaluate FCGHUNTER against
baselines under two dataset settings: (1) standard datasets
with stable distribution; and (2) concept drift scenarios (i.e.,
temporal and ratio-based) with distribution shifts.

Datasets under Stable Distribution. The collected dataset,
denoted as SD, includes 12,000 samples with 6,000 benign and
6,000 malware samples, divided into an 80:20 ratio for training
and testing the models. To ensure representativeness, these
collected samples are evenly distributed across six years, from
2018 to 2023, with 1,000 benign and 1,000 malware samples
per year. To assess robustness, we additionally collected 120
true malware samples from the same six-year period (20
samples per year) as test seeds. These seed samples are distinct
from the initial set of 6,000 malware samples.

Datasets under Concept Drift Scenarios. To comprehen-
sively evaluate the robustness of FCGHUNTER, we construct
additional datasets that simulate realistic concept drift scenar-
ios. These settings are motivated by prior studies [47], [48],
[49], which emphasize the importance of evaluating detection
models under both temporal and ratio shifts.

Temporal Drift Settings. Temporal drift refers to scenarios
where the training data precedes the testing data in chrono-
logical order, simulating practical deployment environments.
To ensure sufficient training data and capture diverse drift
scenarios, we construct three temporal settings, denoted as 7'S-
1, TS-2, and TS-3, by gradually expanding the training set to
include data from 3, 4, and 5 consecutive years, respectively.
Each year contributes 1,600 samples with 800 benign and 800
malware samples for training, and the test set is drawn from
the immediate following year using an 80:20 train-test split,
and the attack set consists of 120 real malware samples from
the same test year. Details are summarized in Table

Ratio Drift Settings. Ratio drift is a form of label distribution
shift that reflects the class imbalance commonly observed
between benign and malware samples in real-world Android
datasets. Motivated by prior studies [47], [43], [50], which
report a typical benign-to-malware ratio of around 10:1 in
practice, we adopt this imbalance level for our ratio drift
scenario. To ensure comparability with the stable setting, we
keep the temporal span fixed from 2018 to 2023. In the
training set, we maintain 800 benign samples per year and
reduce malware samples to 80 per year. The test set also
follows the same 10:1 ratio, containing 200 benign and 20
malware samples per year. The attack set includes 20 real
malware samples per year, consistent with SD. This dataset
configuration is referred to as the RS, as shown in Table

More details about dataset are available on our website |39].
Target Models. To ensure a systematic and comprehensive
evaluation of the testing methods, we construct a diverse set
of 40 ML-based Android malware detection (AMD) models
by combining a wide range of feature types and classifiers.
Specifically, we use 8 types of features, including the Degree,



TABLE III: Detection Performance (F1 Score) of the ML-based AMD Methods under Different Drift Scenarios.

TABLE II: Dataset Configurations for Evaluation.

) Training Set Test Set Attack Set

Setting
Years Sample Number Years Sample Number Years Sample Number

Stable Distribution (SD) | 2018-2023 (800 B + 800 M) x 6 | 2018-2023 (200 B + 200 M) x 6 | 2018-2023 20M x 6
Temporal Shift-1 (TS-1) | 2018-2020 (800 B + 800 M) x 3 2021 600 B + 600 M 2021 120 M
Temporal Shift-2 (TS-2) | 2018-2021 (800 B + 800 M) x 4 2022 800 B + 800 M 2022 120 M
Temporal Shift-3 (TS-3) | 2018-2022 (800 B + 800 M) x 5 2023 1000 B + 1000 M 2023 120 M

Ratio Shift (RS) 2018-2023 (800 B + 80 M) x 6 | 2018-2023 (200 B +20 M) x 6 | 2018-2023 20M x 6

Note: B = Benign samples, M = Malware samples.

MalScan (Degree) MalScan (Katz) MalScan (Harmonic) MalScan (Closeness)
MLP KNN-1 KNN-3 RF AB | MLP KNN-1 KNN-3 RF AB | MLP KNN-1 KNN-3 RF AB | MLP KNN-1 KNN-3 RF AB
SD 0.94 0.93 0.94 092 091 | 095 0.94 0.94 092 091 | 095 0.83 0.93 091 090 | 095 0.93 0.93 092  0.90
TS-1 | 0.92 0.88 0.88 091 093 | 094 0.90 0.91 090 093 | 093 0.89 0.91 090 092 | 094 0.90 0.91 0.90 093
TS-2 0.90 0.90 0.90 092 093 0.95 0.92 0.91 089 093 0.93 0.87 0.92 092 093 0.90 0.92 0.93 092 093
TS-3 0.92 0.95 0.94 092 095 0.95 0.94 0.94 090 094 0.96 0.79 0.95 092 094 0.96 0.95 0.94 091 095
RS 0.86 0.94 0.85 0.74 091 0.93 0.93 0.85 0.66 0.88 0.94 0.80 0.86 0.67 0.85 0.87 0.94 0.85 0.73  0.89
MalScan (Average) MalScan (Concentrate) Mamadroid APIGraph
MLP KNN-1 KNN-3 RF AB | MLP KNN-1 KNN-3 RF AB | MLP KNN-1 KNN-3 RF AB | MLP KNN-1 KNN-3 RF AB
SD 0.95 0.94 0.94 091 091 0.95 0.94 0.94 092 0.90 0.93 0.92 0.91 0.88 0.92 0.92 0.93 0.93 0.88 0.88
TS-1 | 0.94 0.91 0.91 090 093 | 095 0.91 0.91 090 094 | 091 0.87 0.88 089 092 | 093 0.89 0.90 0.86 091
TS-2 | 091 0.91 0.92 092 093 | 092 0.92 0.92 092 094 | 0.90 0.88 0.86 0.89 092 | 094 0.91 0.91 0.88 093
TS-3 0.96 0.95 0.95 091 094 0.97 0.95 0.95 092 095 0.92 0.91 091 089 092 0.96 0.95 0.95 090 095
RS 0.95 0.94 0.86 0.69 0.87 0.93 0.94 0.86 0.75 091 0.86 0.89 0.79 055 0.84 0.94 0.91 0.83 045 0.89

Katz, Harmonic, Closeness, Average, and Concentrate features
from MalScan [§], the family level from MaMaDroid [9],
and the package level from APIGraph. Each feature set is
paired with five widely used ML-based classifiers: MLP [51]],
KNN-1 [52], KNN-3, Random Forest (RF) [53], and AdaBoost
(AB) [54]. The initial detection performance (measured by
F1 score) of these models across four evaluation scenarios is
summarized in Table [I]

Baselines. We selected three baselines for comparison: a
random testing approach and two state-of-the-art adversarial
attack methods [28], [23] for AMD. Due to the limited appli-
cability of these state-of-the-art baselines or the unavailability
of the code, we extended or re-implemented them based on
the descriptions provided in their respective papers.

Specifically, for BagAmmo (23], which has not released
its code, we replicated its algorithm based on the descriptions
provided in their paper. We denote it as BagAmmo* to clearly
distinguish it from the original implementation. To ensure
a fair comparison with FCGHUNTER, we configured the
BagAmmo* in a white-box setting, where feedback is obtained
directly from the target model alongside a surrogate model. In
the configuration referred to as BagAmmo*-G, we used a GCN
surrogate model (the original model in this baseline) trained on
ground truth data. Additionally, we experimented with using
an MLP (the same surrogate model as in our method) in place
of their original GCN, designated as BagAmmo™*-M.

For HRAT |[28]], although the code is available [S5]], it pri-
marily addresses attacks utilizing Degree and Katz centrality
metrics for MalScan on the KNN-1 model. We expanded its
application to encompass a wider array of target scenarios.
However, HRAT is limited by GPU memory constraints and

the need for classifier differentiability [56], [57]], which re-
stricts its use with tree-based models (i.e., RF and AB) and
memory-intensive features (i.e., Average and Concentrate).

Regarding the Random Attack, it randomly generates basic
perturbation operators and evaluates their effects when applied
to the FCG.

Further details about the baselines, including the source
code, are available on our website |39] and GitHub [30].

Metrics. We employed three widely used metrics: Attack
Success Rates (ASR), Perturbation Rates (PR) and Average
Number of Survival Genes per Generation (ASGG). ASR
measures the effectiveness of attack methods. PR quantifies the
relative increase in graph components (i.e., nodes and edges)
of adversarial samples compared with the original malware.
Considering the potential conflicts that can result in certain
infeasible perturbations (i.e., genes in the individuals), ASGG
is designed to assess the count of genes that remain feasible
(referred to as the survival genes) following crossover and
mutation in each generation.

Na
N,

ASR =

1 Ng 1 G
, PR=—3"6;, ASGG=_>"N, ®)
Na i=1 Gg:l

where N, is the number of malware that can successfully
bypass the AMDs, N, is the total number of seed malware,
0; = % is the perturbation ratio for the i-th successful
sample, Orréﬁecting the proportion of added nodes and edges,
G is the total number of generations and IV, is the total number
of surviving genes in the g-th generation.



TABLE IV: Attack Success Rates of FCGHUNTER and Baselines under Stable Distribution.

MalSean (Degree) [ MalScan (Katz) MalSean (Harmonic) MalScan (Closeness)
MLP KNN-1 KNN3 RF  AB  AVG | MLP KNN-I KNN-3 RF  AB  AVG | MLP KNN-I KNN3 RF  AB  AVG | MLP KNN-I KNN-3  RF  AB  AVG
Ours 082 073 076 078 100 082 077 068 069 094 096 081 08 090 083 100 100 091 | 088 097 084 091 100 092
HRAT 017 026 011 018 | 002 004 004 003 | 002 016 007 008 | 009 039 034 027
BagAmmo®-M | 0.58 057 050 013 010 038 024 023 016 025 020 022 070 066 061 043 020 052 | 077 067 059 013 024 048
BagAmmo®.G | 0.65 061 028 014 006 035 | 043 022 005 023 020 023 | 073 067 058 039 019 05/ | 074 064 056 011 030 047
Random 059 062 056 019 003 040 002 014 008 024 021 014 059 067 057 008 014 041 | 063 058 058 013 026 044
Inifial Error | 003 008 003 001 003 006 | 001 00l 003 023 017 009 | 002 013 006 006 011 005 | 008 027 0d6 006 01l 014
MalScan (Average) ‘ MalScan (Concentrate) ‘ Mamadroid APIGraph

MLP KNN-1 KNN-3 RF AB AVG | MLP KNN-I KNN3 RF AB AVG | MLP KNN-I KNN3 RF AB AVG | MLP KNN-I KNN3 RF  AB  AVG
Ours 090 092 083 091 100 091 087 091 078 094 096 089 09 099 093 100 098 097 | 083 084 084 078 072 080
HRAT - - - - - [ 006 016 o006 009 | 011 018 008 012
BagAmmo*-M | 075 063 058 038 021 05/ 072 066 057 023 023 048 058 076 071 056 013 055 | 081 079 078 020 050 062
BagAmmo®.G | 072 062 057 019 014 045 | 073 060 055 029 010 045 | 080 065 053 049 033 056 | 079 074 070 029 047 060
Random 061 062 058 022 006 042 066 060 058 026 007 043 009 012 006 029 014 0J4 | 047 014 007 018 016 020
Inifial Error | 002 006 004 004 003 006 | 002 005 004 006 004 004 | 003 008 003 006 000 006 | 006 005 004 013 007 008

Note: Bold indicates the maximum ASR in each method. Italic underlined values denote the average ASR across ML-based classifiers.

TABLE V: Attack Success Rates of FCGHUNTER and Baselines under Concept Drift Scenarios.
MalScan (Degree) MalScan (Concentrate) Mamadroid APIGraph

Setting Method MLP KNN-1 AB AVG | MLP KNN-1 AB  AVG | MLP KNN-1 AB AVG | MLP KNN-1 AB  AVG

Ours 0.72 0.60 071  0.68 0.73 0.63 077 071 0.78 0.76 085 0.80 0.76 0.77 078 0.77

HRAT ‘ 0.10 0.16 0.13 0.08 0.11 - 0.10 0.10 0.13 - 0.12 0.14 0.14 - .14

TS-1 BagAmmo*-M 0.50 0.21 0.07  0.26 0.71 0.57 0.08 045 0.73 0.72 0.08 051 0.82 0.64 0.30 .59

BagAmmo*-G ‘ 0.48 0.20 0.08 0.25 0.76 0.55 0.07 046 0.78 0.71 0.08  0.52 0.78 0.58 0.40 .59

Random 0.60 0.23 0.03 029 0.28 0.13 0.06 0.6 0.04 0.03 029 012 0.34 0.08 0.18 .20

Initial Error ‘ 0.03 0.11 0.05  0.06 0.02 0.10 0.13  0.08 0.08 0.10 0.07  0.08 0.09 0.08 0.13 .10

Ours 0.95 0.75 073 081 0.90 0.75 082 082 0.91 0.90 094 0.92 0.93 0.92 0.90 .92

HRAT ‘ 0.15 0.22 0.19 0.10 0.14 - 0.12 0.15 0.12 - 0.14 0.09 0.05 - 0.0

TS-2 BagAmmo*-M  0.65 0.65 0.18 049 0.83 0.73 0.19 058 0.93 0.88 034 072 0.96 0.90 057 081

BagAmmo*-G ‘ 0.46 0.63 0.09 039 0.81 0.73 020 0.58 0.93 0.76 0.51 0.73 0.93 0.83 0.60 .82

Random 0.22 0.65 0.18  0.35 0.70 0.66 0.18  0.51 0.47 0.09 043 033 0.63 0.07 0.48 .39

Initial Error ‘ 0.12 0.06 0.06  0.08 0.03 0.07 0.08  0.06 0.02 0.08 0.03  0.04 0.01 0.01 0.14 .05

Ours 0.88 0.81 068 0.79 0.87 0.79 075  0.80 0.92 0.88 084 0.88 0.93 0.90 086 0.90

HRAT ‘ 0.18 0.23 - 0.20 0.13 0.16 - 0.15 0.10 0.07 - 0.09 0.07 0.06 - 0.07

TS-3 BagAmmo*-M  0.68 0.68 0.09 048 0.82 0.78 0.08  0.56 0.63 0.88 0.19 057 0.93 0.85 0.28 .69

BagAmmo*-G ‘ 0.66 0.65 0.08 046 0.78 0.77 0.07  0.54 0.87 0.81 0.18  0.62 0.94 0.88 0.55 .79

Random 0.66 0.69 0.10 048 0.68 0.68 0.08 048 0.07 0.07 0.19 0.11 0.67 0.12 028 0.3

Initial Error ‘ 0.03 0.03 0.01 0.02 0.06 0.08 0.01 0.05 0.03 0.05 0.15  0.08 0.01 0.03 0.08  0.04

Ours 0.86 0.79 0.75  0.80 0.88 0.78 083 083 0.85 0.85 088 0.86 0.83 0.84 0.98 .88

HRAT ‘ 0.26 0.20 - 0.23 0.18 0.15 - 0.17 0.15 0.20 - 0.18 0.15 0.13 - .14

RS BagAmmo*-M 0.66 0.57 0.09 044 0.74 0.60 029 0.54 0.88 0.68 043 0.66 0.87 0.82 0.69 .79

BagAmmo*-G ‘ 0.66 0.66 0.08 047 0.76 0.72 022 057 0.84 0.79 053 072 0.85 0.81 072 079

Random 0.36 0.53 013 0.34 0.63 0.63 0.08 045 0.64 0.34 047 048 0.62 0.63 0.61  0.62

Initial Error ‘ 0.13 0.19 0.11 0.14 0.11 0.09 0.08  0.09 0.12 0.18 0.14 015 0.10 0.09 0.14 .11

Note: Bold indicates the maximum ASR in each method. Italic underlined values denote the average ASR across ML-based classifiers.

B. RQI: Effectiveness

Setup. We conduct this evaluation under the SD setting to
provide a standard training-testing environment environment.
We initialize each population with 100 individuals for 40 gen-
erations, with each individual initializing with 300 perturbation
operations. This configuration follows established precedents
in the literature [28], [23]. According to BagAmmo, the best
attack success rate is achieved at 40 generations. Meanwhile,
HRAT identifies 300 as the optimal number of perturbations.
To enhance HRAT’s performance and ensure fair comparisons,
we increased the number of random initializations in HRAT
from 16 to 100. For consistency and fairness, we configure the
Random attack identically to the baseline methods, using 300

perturbations per iteration and up to 100 iterations in total.
Results & Analysis. As presented in Table our attack
method consistently outperforms all baselines, achieving an
average ASR of 87.9%, which is at least 40.9% higher than the
best-performing baseline, BagAmmo*-M (47.0%). In compar-
ison, BagAmmo*-G achieves an average ASR of 45.3%, the
Random Attack reaches 32.3%, and HRAT performs the worst
with only 12.8%. Additionally, the Initial Error baseline shows
an average ASR of only 7.6%, confirming that successful
attacks are non-trivial.

(1) Baseline Analysis: We found that HRAT generally per-
forms poorly across most models, often yielding an ASR close
to zero after removing the initial error, especially in MalScan



(Katz, Harmonic), MaMabDroid, and APIGraph, where it is
ineffective. Furthermore, the results of MalScan (Degree and
Katz) with KNN-1 show a significant discrepancy compared
to the claims in their paper, with similar doubts raised in this
survey [58] and its results

This poor performance can be attributed to two key lim-
itations: coarse feedback signals and inaccurate perturbation
selection mechanisms. First, the reward in HRAT is designed
to penalize large graph modifications by assigning negative re-
wards proportional to the number of nodes and edges changed.
This encourages minimal perturbation but does not explicitly
guide the attack towards the model’s decision boundary, lead-
ing to coarse and potentially misleading optimization signals.
Second, in HRAT, once the action type is determined by the Q-
network, the attack object (i.e., which node or edge to modify)
is selected by computing the gradient of the target model’s
loss with respect to the graph structure (i.e., the adjacency
matrix of the current graph). Although modifying a single
edge in the graph appears to be a small change, the binary
nature of the adjacency matrix causes this to correspond to
a large and non-smooth change in the model’s input space.
As a result, the computed gradients are often unstable and
unreliable, making it difficult to accurately localize effective
perturbations. The combination of coarse reward signals and
unreliable gradient-based selection creates a cascading effect:
early suboptimal actions lead to increasingly poor graph states,
from which recovery becomes difficult due to the sequential
nature of reinforcement learning, unlike population-based GA
methods that maintain diverse solution candidates.

For BagAmmo¥*, we observed that the choice of surrogate
model (i.e., GCN and MLP) has minimal impact, with ASR
differences typically under 0.06. Thus, we focus on its per-
formance across different target models. From a feature per-
spective, BagAmmo* achieves higher ASRs on MaMaDroid
and APIGraph than on MalScan. This is because it relies on
a single perturbation operator (i.e., adding/removing edges),
which directly affects edge-based features like MaMaDroid
and APIGraph. In contrast, MalScan features are derived from
node-level graph metrics (e.g., degree centrality), which are
less sensitive to such simple edge modifications. From a model
perspective, BagAmmo* performs reasonably well on simple
models (i.e., MLP, KNN-1 and KNN-3) but struggles on
ensemble models (i.e., RF and AB). This exposes another
limitation of coarse reward signals. Although BagAmmo*’s
confidence-based feedback is more principled than HRAT °’s
penalty-based approach, it remains too coarse for ensemble
methods. Since ensemble models use majority voting, their
output probabilities are less affected by small changes (e.g.,
adding one edge). As a result, the feedback lacks sufficient
granularity to guide the GA, leading it to local optima. Overall,
the combination of a single perturbation type and feedback
with limited directionality makes it difficult for BagAmmo*
to handle complex feature types and model architectures.

Zhttps://github.com/reproducibility-sec/reproducibility/blob/main/sheet 1 .csv

Finding #1: Existing methods are notably ineffective,
particularly on MalScan and ensemble models, with results
that are close to random testing. This ineffectiveness stems
from coarse feedback mechanisms and limited perturbation
strategies.

(2) Robustness Analysis: We further analyze the robustness
of different features and model architectures by examining
ASR variations under our unified attack setup. From the
perspective of features, MalScan (Harmonic, Closeness and
Average) and MaMaDroid consistently exhibit high average
ASRs, typically exceeding 91% across most classifiers, sug-
gesting these features may be more susceptible to attacks.
Conversely, features like MalScan (Degree and Katz) and
APIGraph demonstrate greater robustness, with average ASRs
often below 82%, likely due to the complexity of perturbing
these features effectively; From the model perspective, en-
semble classifiers (i.e., RF and AB) generally exhibit stronger
robustness (i.e., lower ASR from baselines) compared to single
models (i.e., MLP, KNN-1 and KNN-3). Nevertheless, our at-
tack still achieves high ASRs (over 90%) on ensemble models
when paired with susceptible features in MalScan (Harmonic,
Closeness and Average), showcasing its capability to handle
challenging models. By contrast, ASRs drop to below 80%
on more resilient combinations, such as ensemble models
with APIGraph features, reflecting the increased difficulty in
attacking these robust setups.

Finding #2: MalScan (Harmonic, Closeness and Average) ]
and MaMaDroid are less robust, while MalScan (Degree
and Katz) and APIGraph are more robust; Ensemble models
(i.e., RF and AB) generally show greater robustness.

J

Answer to RQ1: FCGHUNTER, with an average ASR of
87.9%, outperforms baselines by at least 40.9% in white-
box attacks, achieving higher ASR across diverse models.
The results highlight the persistent vulnerability of current
FCG-based ML models to adversarial attacks, emphasizing
the need for robustness testing.

J

C. RQ?2: Effectiveness under Concept Drift

Setup. Compared to RQ1, which evaluates effectiveness under
standard static distributions, RQ2 focuses on assessing attack
effectiveness under concept drift scenarios (TS-1 to TS-3 and
RS in Table . The baseline setup remains consistent with
§ Given the increased experimental complexity and
time cost, we select representative target models based on their
performance in Table [III| and RQ1 results.

Specifically, among the KNN variants, we select KNN-1
due to its wider adoption [8], [9], |28]] and slightly better
performance compared to KNN-3 in Table Between the
two ensemble models, AB is chosen over RF because RF
consistently underperforms in the RS setting (all F1 scores
below 0.74), while AB demonstrates stronger performance
across all four settings (all F1 scores above 0.84). Based
on these observations, we choose MLP, KNN-1, and AB as
representative architectures. For feature selection, we choose
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Fig. 3: An Example of Dataset Distributions Across

MalScan (Degree) and MalScan (Concentrate) based on their
stronger robustness observed in §am0ng the six variants
of MalScan. To ensure diversity, we also include MaMaDroid
and APIGraph, which represent feature extraction paradigms
different from MalScan.

Results & Analysis. As shown in Table our method
outperforms all baselines in most configurations under four
concept drift scenarios, achieving an average ASR of 82.3%
compared to BagAmmo*-G (58.1%), BagAmmo*-M (57.1%),
Random Attack (35.4%), and HRAT (14.0%). Also, the Initial
Error baseline yields only 7.7% ASR, confirming that attack
success is not incidental. Next, we provide a detailed analysis
to understand these results.

Different Scenarios Based on the APIGraph Feature.

(1) Comparative Effectiveness Analysis: Our approach
demonstrates particular strength in challenging scenarios such
as MalScan features with tree-based models (e.g., AB), where
we consistently achieve higher ASRs than all baselines. We
attribute it to our method’s diverse perturbation strategies and
fine-grained fitness guidance, which effectively navigate com-
plex decision boundaries of robust ensemble models. These
patterns are consistent with RQ1 (§ [VII-B). In contrast, in
specific configurations such as APIGraph and MaMaDroid
with MLP, BagAmmo* variants occasionally match or slightly
outperform our method. This can be attributed to three fac-
tors: (1) MaMaDroid and APIGraph features abstract edge-
level structural information, making them highly sensitive



TABLE VI: Perturbation Rates of Successful Attack Samples.

MLP | KNN-1 | KNN-3 | RF AB

MalScan (Degree) 0.04 2.23 0.04 517 | 2.29
MalScan (Katz) 0.17 2.88 0.19 4.68 | >10
MalScan (Harmonic) <0.01 0.81 <0.01 0.02 0.01
MalScan (Closeness) <0.01 0.52 <0.01 0.68 1.58
MalScan (Average) <0.01 <0.01 <0.01 5.27 8.07
MalScan (Concentrate) <0.01 1.70 <0.01 >10 >10
MaMaDroid 0.45 0.45 0.14 >10 | 4.85
APIGraph 1.31 0.26 0.14 >10 | 3.07

to BagAmmo*’s simple edge perturbations, consistent with
RQ1 observations in § [VII-B} (2) APIGraph represents more
aggregated features, which creates a smoother optimization
landscape that mitigates the local optima issues typically
encountered by GA-based methods. (3) Our SHAP-assisted
fitness function assumes consistent training-test distributions,
which weakens under concept drift. While our multi-objective
approach (§ provides some mitigation through model
confidence, this distributional assumption still contributes to
the occasional performance gaps.

(2) Distribution Drift Impact Analysis: To analyze how
different types of concept drift affect attack effectiveness
across methods, we visualize the data distributions from Ta-
ble using APIGraph, as shown in Fig.

We make three key observations about drift impact: (1)
Across all drift scenarios, attack samples (red) exhibit substan-
tial overlap with training malware samples (green), indicating
that graph-based features maintain structural consistency de-
spite distributional changes. This overlap confirms that attack
effectiveness reflects genuine evasion capabilities rather than
model degradation under drift. (2) In the TS-1 setting, limited
training data (3 years) leads to sparse coverage of the feature
space. Attack samples tend to reside farther from benign
regions, making them harder to misclassify and explaining
the consistent ASR drop across all methods compared with
Table (3) By contrast, TS-2 and TS-3 have enough training
samples, and show highly consistent benign (blue) and mal-
ware (green) distributions, along with similar ASR outcomes.
This suggests that a one-year temporal shift introduces limited
structural drift in graph-based features, preserving detector
stability across adjacent years.

Answer to RQ2: FCGHUNTER consistently outperforms
all baselines across four concept drift scenarios, achiev-
ing an average ASR of 82.3%, which is at least 24.2%
higher than the best-performing baseline. These results
demonstrate the strong adaptability of FCGHUNTER under
realistic, dynamic conditions.

D. RQ3: Performance

1) Perturbation Rates across Target Models:
Setup. To evaluate how much FCGHUNTER perturbs original
samples, we compute the average PR across all successful

adversarial samples for each target model under the SD
setting.

Results & Analysis. As shown in Table successful ad-
versarial samples on MLP and KNNs-based models exhibit
relatively low PR, while higher PR on ensemble models.
Specifically, MalScan variants such as Harmonic, Closeness,
Average, and Concentrate achieve PRs below 0.01 under both
MLP and KNN-3. However, PRs under KNNs are slightly
higher compared to MLP, suggesting MLP’s less robustness.
In contrast, tree-based models (i.e., RF and AB) generally
exhibit higher PRs, except in the MalScan (Harmonic) setting,
where perturbations remain low. While a few cases show
PRs exceeding 10, these typically result from unusually large
original samples. For instance, in the MalScan (Katz) with AB
configuration, 50% of adversarial samples have PRs below 3,
and 73% remain under 10, indicating that extreme values are
outliers. Overall, higher PRs indicate that ensemble models are
more challenging to attack than KNNs and MLP models, yet
the scale of applied perturbations in successful attacks remains
within a reasonably acceptable range.

Finding #3: Single models (i.e., MLP and KNNs) are
generally easier to bypass, requiring fewer perturbations.
In contrast, ensemble models (i.e., RF and AB) combine
predictions from multiple models, making them more robust
and necessitating greater perturbations to compromise.

2) Survival Genes during GA Iterations:

Setup. To assess the usefulness of the dependency-aware
strategy (see § in reducing mutation conflicts, we cal-
culated the ASGG over 40 iterations using MalScan (Degree)
with MLP, the fastest target model. Under the SD setting,
we selected 20 malware samples from 2019 and conducted
comparative experiments with and without the dependency
analysis. To prevent premature termination of these samples,
the evaluation phase of the GA was omitted.

Results & Analysis. The green and orange lines in Fig-
ure (4| represent FCGHUNTER’s ASGG with and without
the dependency-aware strategy, respectively. Throughout the
iterations, the green line consistently maintains a higher ASGG
compared to the orange line, with the difference doubling
after the fifth generation. The orange line shows a noticeable
bump between generations 30 and 35. Our analysis indi-
cates that this increase can be attributed to the probabilistic
introduction of a significant number of new genes by the
mutation, leading to pronounced fluctuations. Following this
bump, the ASGG quickly declines due to the absence of the
dependency-aware strategy capable of preemptively resolving
gene conflicts. In contrast, the green line remains more stable
throughout the generations. This stability suggests that the
strategy helps preserve the number of viable genes within the
population, which could prevent premature convergence of the
GA optimization. Stability in the gene pool is crucial because
significant diminishment in genetic variety can impede the
GA’s ability to generate new and potentially more effective
individuals [59].
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Finding #4: The dependency-aware strategy protects criti-
cal genes from mutation conflicts, thereby preserving ge-
netic diversity and preventing premature convergence by
maintaining a sufficient number of viable perturbations.

3) Runtime Performance Compared with Others:
Setup. To assess the performance of the testing, we monitored
the number of adversarial samples generated within 500 min-
utes on MalScan (Degree) and KNN-1 model under the SD
setting. These models and features were chosen because the
baselines (e.g., HRAT) achieved the highest ASR with them.

Results & Analysis. Figure @demonstrates that FCGHUNTER
(orange line) detects more successful attacks than both
BagAmmo* (green line) (i.e., BagAmmo*-G) and HRAT (blue
line). HRAT’s runtime efficiency is notably low because each
perturbation requires the computation of gradient information
from the FCG and target model. Although FCGHUNTER
and BagAmmo* efficiently completed most attacks within a
short period, exhibiting high runtime efficiency,BagAmmo*’s
progress stalls after approximately 110 minutes, indicating
premature convergence, likely due to the limited variety in
its single operators (i.e., only involve adding edges) and the
lack of directional feedback from target models. In contrast,
the persistent growth of FCGHUNTER highlights its ability to
continuously explore the huge search space and identify viable
solutions.

For further analysis, we also calculated the average time
cost per iteration of mutant generation, with the following
results: 0.34s for BagAmmo®*, 18.72s for HRAT, and 0.67s
for FCGHUNTER. HRAT takes significantly longer due to
the heavy gradient calculation. Compared to single-objective
BagAmmo*, the selection process in our method is slightly
slower. However, our dependency-aware mutation and multi-
objective optimization are well worth it, as they ultimately
lead to a significant reduction in the overall time cost required
to detect adversarial exampless, as shown in Figure@

Answer to RQ3: Successful attacks exhibited relatively low
perturbation rates, indicating high attack efficiency. Notable
efficiency was demonstrated in solving operator conflicts,
thereby ensuring diversified sequences to avoid premature
convergence. FCGHUNTER has also better runtime com-
pared to other methods.

TABLE VII: Ablation Configuration Across Target Models.

Model | Cri | ASN ADN ALE | Dep | Int Sur SAT
MLP 4 X X X v v X X
KNN-1 v X X X v v v X
KNN-3 4 X X X v v v X
Random Forest | ¢ v v v X X X v
AdaBoost 4 4 4 v X X X 4

Note: ¢ indicates the component is applicable and included in the ablation;
X indicates it is not applicable and excluded.

E. RQ4: Ablation Studies

Setup. To assess the effectiveness of key components in
FCGHUNTER, we quantified the ASR reduction across 40
target models upon the removal of specific components under
the SD setting.

The ablated components include critical area identification
(§ E C'ri), the dependency-aware strategy (§ @ Dep), and
different fitness functions (§ . For MLP models, the fit-
ness function uses interpretation-based scores (Int); for KNN
models, it includes additional surrogate-derived scores (Sur);
and for ensemble models, it adopts a constraint-satisfaction-
based score (SAT) that analyzes their internal decision paths.

In addition, three complex perturbation operators (§ ,
including Add Sparse Nodes (ASN), Add Dense Nodes
(ADN), and Add Long Edges (ALFE) are exclusively applied
to ensemble models (i.e., RF and AB) due to their strong
robustness. Since these operators do not involve removal oper-
ations, they are less likely to trigger gene conflicts. Therefore,
the dependency-aware strategy (Dep) becomes less critical for
these models.

As summarized in Table MLP and KNN models are
evaluated with Cri, Dep, and Int (with Sur additionally
for KNNs), while ensemble models are evaluated with Cri,
ASN, ADN, ALE, and SAT. The experimental parameters
are consistent with those used in RQ1 (§ .

Results & Analysis. Table displays the ASR discrep-
ancies resulting from the removal of individual components,
compared to the complete configuration in Table

(1) Impact of Critical Area Identification (Cr7): Remov-
ing the Cri causes noticeable ASR drops across most models
and features, highlighting its universal role in guiding effective
perturbations. From the feature perspective, MalScan (Katz
and Concentrate) show the largest ASR drops upon removing
Cri, with drops up to 0.29 for MalScan (Katz) with MLP.
As discussed in RQ1 (§ [VII-B), these features are particularly
robust and typically require targeted, high-impact perturbations
to succeed. Without Cri to narrow the search space to the most
effective subgraphs, the attack is prone to spending its pertur-
bation budget on less influential regions, leading to failure.
In contrast, APIGraph shows minimal impact from removing
Cri (drops below 0.05), likely due to its aggregated feature
nature where most regions are already relatively effective for
perturbation. By contrast, removing C7ri causes consistent
ASR drops across different classifiers, ranging from 0.12 to
0.17. This consistency reflects the model-agnostic nature of
Cri. Its effectiveness arises from identifying feature-relevant
subgraphs based on predefined sensitive APIs during feature
extraction, independent of the downstream classifier.




TABLE VIII: Ablation Studies on the Key Components of FCGHUNTER.

‘ MLP [ KNN-1 [ KNN-3 Random Forest AdaBoost

[ “cri Dep  amt | i Dep It -Sur | -Cri Dep -t -Sur | -Cri -ASN -ADN -ALE _-SAT | -Cri-ASN _-ADN _-ALE _-SAT

MalScan (Degree) 011 -008 ) 0.2 002 003 005 0034 015 009, 014 016 | 011 001 000, 019, 010 | -009 019t 002 056 009
MalScan (Katz) ‘ 0291 -0.60 1 -0.56 1 ‘ -0.23 1 -0.17 -0.11 -0.11 ‘ 0231  -0.50 1 -0.12 -0.19 -0.19 1 -0.05 -0.13 -0.38 -0.22 1 -0.15 -0.01 -0.28 -0.48 -0.15 1
MalScan (Harmonic) 010 -008 ) 007 048 047 018 013 018 013 015 025+ | 014 001 000, 041 018 | 013 000, 001 060 01
MalScan (Closeness) | 016 021 008 | 018 018 016 021 | 017 013 013 015 | 011 001 002 035 012 | 012 006 003 -025 -0l
MalScan (Average) 020 015 012 018 018 018 0281 020 048 048+ 021 | 007  -003 002 023 015 | 004 000, 013 018, -009
MalScan (Concentrate) ‘ -0.18 -0.15 -0.11 ‘ 0231 0271 -0231 -0287 ‘ -0.14 -0.11 -0.09 -0.16 01917  -006 1 -0.14 T -0.61 -0.19 -0.16 T -0.05 -0.50 1 -0.58 -0.15
MaMaDroid 018 020 016 018 022 019 02 014 02 018 016 | 014 000, 000, 0757 013 | 012 000, 000, 0781 014
APIGraph [-004) 013 004y |-0051 005 0031 0030 0011 018 0031 0041 | -0041 000 000 068 009, | -002L 0004 000, 072 007
AVG 016 020 016 017 016 004 016 015 019 013 017 | 014 002 004 045 015 | 012 004 012 052 0l

Note: For each feature row, T marks the setting with the largest ASR drop (strongest impact), and | marks the setting with the smallest drop. The last row
reports the average ASR drop across all features.

(2) Impact of Dependency-aware Strategy (Dep): The
Dep component mitigates gene conflicts to preserve popula-
tion diversity during GA optimization. Removing Dep reduces
ASR across configurations, confirming its utility. However,
unlike Cri, the impact patterns are less consistent across
different settings, reflecting the context-dependent nature of
gene conflicts, which means gene conflicts do not occur
uniformly across all optimization scenarios. Notably, MalScan
(Degree) consistently exhibits minimal sensitivity to Dep
removal (drops below 0.09). This suggest that degree-based
features, which capture local structural properties, benefit
more from direct connectivity manipulation than from diverse
population exploration.

(3) Impact of Fitness Function Variants: Removing fitness
function variants (Int, Sur, and SAT) results in ASR drops
across all scenarios, confirming their utility for breaking
local optima in GA. From the feature perspective, APIGraph
consistently shows minimal sensitivity (drops below 0.09).
This may indicate that for the aggregated feature, the original
prediction probabilities already provide sufficient optimization
signals, potentially reducing the need for fine-grained fitness
components.

(4) Impact of Complex Perturbation Operators: The im-
pact of new perturbation operators varies significantly across
ensemble models. The removal of ALE demonstrates substan-
tial ASR drops, especially in the MaMaDroid and APIGraph
models. This is primarily because these models are based
on features constructed from the call relationships between
functions, making them highly sensitive to substantial changes
in edges, particularly those directed toward system functions.
Although the node-adding based operators, ASN and ADN,
aim to reduce the centrality of malicious nodes in MalScan
graphs, ALE more significantly disrupts node centrality by
altering graph structures, i.e, adding edges that modify path
lengths and node connectivity (§VI-A). This change impacts
the graph’s overall centrality more drastically than simply
adjusting nodes.

Finding #5: Edge-based perturbations tend to be more
effective than node-based ones, impacting the most robust
models by altering the graph’s features significantly.

To further analyze the generality of complex operators, we
extended the ablation study by applying them to simpler mod-
els (MLP, KNN-1, and KNN-3). Specifically, we incorporate

Seed Malware on MLP
Adversarial Samples on MLP
Seed Malware on KNN1
Adversarial Samples on KNN-1
Seed Malware on KNN3
Adversarial Samples on KNN-3

ounts of detected malwares
S

210

MalScan (Concentrate) Mamadroid APIGraph

Fig. 6: Detection Score Difference Between Malware and
Corresponding Adversarial Samples.

all seven mutation operators into a full configuration, denoted
as All Operators, and then perform three additional ablations
by selectively removing each of the complex operators (i.e.,
ASN, ADN, ALE) in turn. We mainly focus on two repre-
sentative feature sets, MalScan (Concentrate) and MaMaDroid.
The results in Tablereport the relative performance changes
of these ablations with respect to the All Operators baseline.

Compared with the RQ1 results in Table incorporating
complex operators into these simple models leads to slight
decreases in ASR. This indicates that large perturbations
are not always beneficial for these classifiers, which can be
effectively bypassed by the basic mutations. In many cases,
removing a complex operator even yields marginal improve-
ments, suggesting that smaller operators could provide incre-
mental search steps for GA optimization. By contrast, robust
ensemble models typically require stronger perturbations to
overcome their inherent stability, making complex operators
more valuable in those settings. Therefore, we only use these
complex operators to ensemble models.

Answer to RQ4: Each component in FCGHUNTER plays
a distinct role in enhancing the ASR for different mod-
els. Specifically, Cri and Dep significantly boost ASR in
MalScan (Katz), while Sur is crucial for KNN models. In
ensemble models, ALE proves to be highly influential.




TABLE IX: Evaluation of Complex Operators on Single Models.

MLP KNN-1 ‘ KNN-3
All Operators | -ASN  -ADN  -ALE | All Operators | -ASN -ADN -ALE  All Operators | -ASN -ADN -ALE
MalScan (Concentrate) 0.81 +0.01 +0.02 +0.03 0.88 +0.03 -0.03 +0.03 0.79 +0.07 +0.05 +0.08
MaMaDroid 0.91 0.00 +0.03  -0.08 0.87 -0.01 -0.01 -0.01 0.86 +0.03  +0.03  +0.04

Note: Numbers under -ASN/-ADN/-ALE denote relative changes w.r.t. the “All Operators” baseline. Positive values indicate improvements, negative values
indicate decreases.

VIII. DISCUSSIONS

A. Evaluation on Real-world AMD.

To explore the robustness issues present in real-world
models, we selected VirusTotal [45], a leading platform for
malware analysis, as our target [23], [24], [33]. We adopt
the VirusTotal detection count, which refers to the number
of antivirus engines that classify a sample as malicious. This
count serves as a proxy signal and is widely used in prior
works [60], [47] to label malware samples. We randomly
selected 10 successful adversarial samples from each of the
9 attack scenarios, covering three classifiers (MLP, KNN-
1, KNN-3) and three feature representations (MalScan, Ma-
MaDroid, and APIGraph). For each adversarial sample, we
retrieved its corresponding original malware and computed the
VirusTotal detection counts before and after the attack. We
then calculated the average detection counts for both original
and adversarial samples in each scenario.

Figure E]presents the results in 18 bars (9 pairs), where each
pair compares the average detection scores of the seed malware
and its adversarial counterpart under a specific model-feature
combination. Notably, the detection scores (which indicate
the level of maliciousness) dropped significantly (by over
28%), suggesting potential weak robustness in the real-world
AMD systems of several vendors. This drop might be due
to these systems relying on detection algorithms that have
robustness issues. Further analysis shows that the impact of
adversarial samples varies across different classifiers. KNN-3
experiences the greatest impact (average 50%) from a model
perspective, while APIGraph has the greatest impact (average
51%) from a feature perspective. This suggests a preference for
relatively robust features and models in real-world scenarios,
but they still cannot withstand strong adversarial attacks (e.g.,
FCGHUNTER). To further understand why FCGHUNTER
performs effectively in real-world black-box systems (i.e.,
VirusTotal), we analyzed the transferability across different
features and models. For more detailed results, please refer to
our website [39].

While our experimental setting follows prior works [23],
[61]], it is important to note that the detection of the original
malware may be influenced by prior submissions to the
engines, i.e., the original malware sample becomes known
malware and tends to be detectable by more VirusTotal engines
over time [62]. This could bias the comparison between the
detection results of the original samples and their variants.
Nevertheless, we emphasize that these observations reflect two
complementary aspects of real-world challenges: on one hand,
detection algorithms may exhibit robustness weaknesses when
confronted with adversarial attacks (i.e., variants of known

malware cannot be detected); on the other hand, commercial
AMD engines may react slowly to newly generated variants,
leaving a time window where adversaries can evade detection.
Together, these findings highlight the urgent need for more
robust and proactive defenses.

B. Robustness Enhancement via Retraining.

The experimental results reinforce the need for continued
enhancements in AMD robustness. From the feature perspec-
tive, integrating robust features such as MalScan (Katz) and
APIGraph to comprehensively represent malware behaviors
proves to be a promising approach. This method, akin to
merging static and dynamic features, leverages the distinct
advantages of each to provide a complete depiction of po-
tential threats [63]. From the model perspective, adversarial
retraining has been a popular strategy to boost ML model
robustness [25]], [26], [64]. We further evaluated whether
adversarial samples generated by FCGHUNTER can improve
model robustness via retraining. Specifically, we enhanced
the original training set under SD setting with 90 adversarial
samples and tested the improved model’s resilience using an
independent set of 60 adversarial samples, aiming to verify
the mitigation of previously identified vulnerabilities. During
the retraining process, we varied the number of adversarial
samples in the training set from 10 to 90 to observe changes
in the ASR from the test samples.

As shown in Figure as adversarial samples are introduced
into the training set, there is a sharp decline in ASR for
all features. This decrease is most pronounced within the
first 10 samples added, indicating that retraining with even
a small number of adversarial samples significantly enhances
model robustness. However, different features show different
levels of resilience. For example, features like MaMaDroid
exhibit unstable or fluctuating ASR performance even with
increased adversarial training, which may indicate the model
is susceptible to overfitting and forgetting previously correct
patterns due to MaMabDroid’s family features being quite
low-dimensional (i.e., 121 dimensions). Similarly, the issue
also appears in APIGraph, although it is less severe than in
MaMaDroid. In contrast, MalScan variants demonstrate more
stable because they capture a broad and complex set of behav-
iors or characteristics, making them less prone to drastic shifts
in performance with the introduction of adversarial examples.
Thus, during retraining, it is crucial to choose a suitable ratio
of adversarial samples for different feature types to mitigate
this issue. In summary, the adversarial examples generated
by FCGHUNTER could be effectively used to enhance the
resilience of ML-based models.
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C. High-efficiency Strategies for Ensemble Models.

The perturbation rates for ensemble models were observably
high (, partially due to a limited number of modifiable
nodes (i.e., user function calls) in certain malware. This led
us to propose the new node-based mutation operators (i.e.,
ASN and ADN). However, we found that their effectiveness
was still limited to specific scenarios. These results indicate
that the mutation operators could still be improved, especially
by developing edge-based perturbation variants to potentially
increase effectiveness on ensemble models, as demonstrated by
the success of edge-based ALE in Moreover, we can
also attempt to develop some interpretation-based feedback
at the operator level, which is capable of identifying more
influential and less frequently altered operations.

D. Robustness of Mutation Operators Against Preprocessing.

Mutation operators are often vulnerable to static prepro-
cessing techniques such as dead code elimination [65], [66],
[67] and control-flow simplification [68], [69]. At the code
modification level, our mutation operators reduce to three
fundamental strategies, namely AddEdge, AddNode, and Re-
moveNode, which serve as the building blocks for more
complex operators.

Both AddNode and AddEdge perturbations introduce se-
mantically reachable code paths. For AddNode, although the
inserted function may return unused values, removing such
calls requires non-trivial def-use and data-flow analysis to
determine that these calls have no observable behavioral
impact. However, this is an expensive process that is not typi-
cally deployed in AMD pipelines. AddEdge supports multiple
implementations. While simplistic forms such as IF(FALSE)
are susceptible to branch pruning during static simplification,
more resilient variants like wrapping the call within a try-catch
block generate realistic control-flow patterns that are less likely
to be flagged or eliminated. This technique has been shown to
be effective in previous work |23].

In contrast, RemoveNode performs inline expansion of the
target function into its callers. While this introduces duplicated
basic blocks, these blocks include meaningful control and
data flows, including downstream function calls. Detecting and
removing them would require basic-block-level code similarity

analysis such as clone detection across inline contexts, which
is both time consuming and uncommon in post-compilation
Android workflows.

Notably, all mutation operations are performed at the inter-
mediate representation (IR) level extracted post-compilation
using Androguard. The resulting modified code is structurally
embedded and is preserved through standard repackaging
processes. Since repackaged malware is rarely subject to full
recompilation or IR-level optimization, these mutations remain
intact and operational.

In summary, while no attack strategy can claim complete
immunity against all possible preprocessing transformations,
our design prioritizes semantic reachability, realistic code
patterns, and IR-level modification to mitigate the impact of
current static simplification techniques.

E. Scope of Threat Model.

Traditional concealment techniques, such as manifest mod-
ification [33], code obfuscation [70], and repacking [71], pri-
marily aim to bypass rule-based or pattern-matching detectors
by disguising or altering program artifacts. For example, man-
ifest modification may insert redundant permissions, declare
unused hardware features, or register extra components to
mislead simple pattern checks; code obfuscation often renames
classes, methods, and variables to disguise semantic meaning
and break signature matching; and repacking typically involves
embedding malicious payloads into benign applications or re-
packaging existing malware with new cryptographic signatures
to evade detection. By contrast, adversarial attacks against Al-
based malware detection do not attempt to hide the malicious
logic itself. They introduce small, semantics-preserving per-
turbations to code structure changes that can mislead graph-
based ML classifiers. Consequently, the underlying malicious
behavior may remain observable to rule-based heuristics, yet
a ML-based detector that normally achieves near-perfect ac-
curacy (e.g., 95%) can still be bypassed.

We focus on an emerging attack surface unique to Al-driven
detectors, which anticipates how adversaries may exploit ro-
bustness vulnerabilities in machine learning systems to evade
detection as these systems are increasingly deployed in real-
world malware defenses.

IX. THREATS TO VALIDITY

The selection of the dataset, including the training dataset
and the seed malware, poses a threat to validity. We address
this threat by adhering to established data selection protocols
and collecting a diverse range of APKs from 2018 to 2023.
Similarly, to ensure the validity and representativeness of the
seed malware, we randomly selected these seeds from the past
six years and varied their sizes to maintain diversity. To the
best of our knowledge, our dataset spans a recent six-year
range, providing broader coverage compared to the baselines.

The selection of models presents another potential threat to
validity, as the results may vary in different AMD models.
To mitigate it, we have endeavored to include a broad range
of categories, incorporating features with various granularity



from the FCG and multiple machine learning models with dis-
tinct decision mechanisms. To the best of our knowledge, our
evaluations are the most comprehensive concerning various
FCG-based features and models.

The replication and extension of baselines pose another
threat to validity. Notably, significant discrepancies persist be-
tween our results and those reported in the original papers. Ac-
tually, the reproducibility issues have also been acknowledged
by existing works [58]. We addressed this threat carefully by:
1) meticulously reviewing the code and consulting with their
authors to clarify ambiguous parts; 2) engaging in discussions
with the authors about the discrepancies, attributing potential
causes to differences in datasets, the APK extraction tools used
(e.g., Androguard [[72] versus FlowDroid [[73]), and the models
evaluated; 3) releasing our code, models, and seed malware to
facilitate verification and replication of our findings [39].

The other potential threat arises from static preprocessing
techniques (e.g., advanced dead code elimination), which
could in principle reduce the effectiveness of our perturba-
tions. Although our design emphasizes semantic reachability,
realistic control/data flows, and IR-level modification (see
§, more advanced preprocessing might still filter out
some injected code. Looking ahead, we also envision future
extensions such as opaque predicates (e.g., if (time <
0)), which could further increase semantic complexity and
harden perturbations against advanced preprocessing.

Finally, employing the interpretation-based method (i.e.,
SHAP) for interpreting model decisions could pose a threat
to validity. SHAP values may not always accurately reflect
the influence of different inputs in models. Additionally, alter-
native interpretation methods could be considered. To mitigate
this, we did not rely solely on interpretation scores; instead,
the model’s output served as the primary and dominant feed-
back. Our extensive evaluation also demonstrates the overall
usefulness of this approach. In future work, we plan to explore
the impact of various interpretation methods on FCGHUNTER.

X. RELATED WORK

ML-based Android Malware Detection. ML techniques
have gained significant traction in the domain of Android
malware detection, leveraging diverse feature extraction and
embedding methodologies, such as string-based [4], [5],
image-based [6], [7], graph-based [8], [9], [10]. For instance,
Drebin [4] utilizes static strings such as permissions and API
calls extracted from APKs, employing Support Vector Ma-
chines (SVM) for classification. Addressing string obfuscation,
RevealDroid [3]] resorts to byte-code extraction for consistent
classification with Drebin. However, string/image-based ap-
proaches often lack semantic information, prompting a shift to-
wards more sophisticated techniques like Function Call Graph
(FCG) representations, exemplified by MalScan [8]]. MalScan
represents FCG from the smali code as a social network and
employs k-nearest neighbors (KNN) as the classifier, offering
improved robustness and efficacy.

Adversarial Attacks for Robustness Evaluation. Related
works |[74], [21], 175], 28], [33], [23] have primarily focused
on various techniques for generating adversarial examples

to evaluate the robustness of malware detectors. Abundant
adversarial attacks on string-based detectors are relatively
simple and straightforward features using one-hot encoding,
like Drebin [4]. By using gradient-based methods [74], [21],
[76] or interpretability-assisted techniques [77], [24], features
can be directly modified and mapped back to the code, leading
to high attack success rates. However, adversarial attacks on
graph-based detectors face the problem-feature reverse chal-
lenge. This work [21] focused on the feature level but struggled
to maintain the functional integrity of the APK. Two recent
studies have shifted towards exploring code-level attacks,
employing heuristic search algorithms [28], |[23]. Zhao et
al. [28] exploited gradient information to estimate perturbation
locations and directions. However, discrete gradient estimation
errors on binary graphs may cause reinforcement learning to
proceed in the wrong direction. Li et al. [23] utilized single
perturbations and scores from a surrogate model to guide
the attack process. However, it easily falls into local optima
due to the vast perturbation space created by sparse features
like MalScan, resulting from a lack of precise feedback and
diversified operators. Other researchers are exploring more
efficient adversarial attack techniques to improve robustness
evaluations of AMD methods, such as using interpretation-
assisted feedback [78], [79], [24], [80]. For example, Amich et
al. | 78] leverages SHAP to guide adversarial example crafting
against ML models, seeking meaningful perturbations to aid in
assessing the system’s robustness. Sun et al.[24] utilize SHAP
to guide attacks on string-based detectors, identifying critical
API permissions and inserting uncalled functions. Similarly,
Yu et al.|80] propose step-level interpretability feedback for
deep reinforcement learning in security, aiding in identifying
critical steps.

Compared to these studies, which focus on proposing
adversarial attacks, we concentrate on testing the robust-
ness of graph-based malware detectors through adversarial
graph/sample generation and providing findings to enhance
robustness. Additionally, our method does not require the
model to be differentiable and significantly broadens the range
of target features and models.

XI. CONCLUSION

In this paper, we introduce a method to evaluate the
robustness of FCG-based AMD systems. This method in-
corporates dependency-aware mutation strategies and utilizes
innovative interpretation-based fitness functions to effectively
guide perturbation optimization within an FCG. Our exper-
iments demonstrate superior performance across diverse 40
scenarios, and achieve an average attack success rate of 87.9%,
significantly outperforming baseline methods. Furthermore,
our findings offer valuable insights for enhancing model
robustness in future developments, and we also provide an
in-depth discussion on the benefits of adversarial retraining.
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